Modeling a Cortical Auxin Maximum for Nodulation: Different Signatures of Potential Strategies
نویسندگان
چکیده
Lateral organ formation from plant roots typically requires the de novo creation of a meristem, initiated at the location of a localized auxin maximum. Legume roots can form both root nodules and lateral roots. From the basic principles of auxin transport and metabolism only a few mechanisms can be inferred for increasing the local auxin concentration: increased influx, decreased efflux, and (increased) local production. Using computer simulations we investigate the different spatio-temporal patterns resulting from each of these mechanisms in the context of a root model of a generalized legume. We apply all mechanisms to the same group of preselected cells, dubbed the controlled area. We find that each mechanism leaves its own characteristic signature. Local production by itself can not create a strong auxin maximum. An increase of influx, as is observed in lateral root formation, can result in an auxin maximum that is spatially more confined than the controlled area. A decrease of efflux on the other hand leads to a broad maximum, which is more similar to what is observed for nodule primordia. With our prime interest in nodulation, we further investigate the dynamics following a decrease of efflux. We find that with a homogeneous change in the whole cortex, the first auxin accumulation is observed in the inner cortex. The steady state lateral location of this efflux reduced auxin maximum can be shifted by slight changes in the ratio of central to peripheral efflux carriers. We discuss the implications of this finding in the context of determinate and indeterminate nodules, which originate from different cortical positions. The patterns we have found are robust under disruption of the (artificial) tissue layout. The same patterns are therefore likely to occur in many other contexts.
منابع مشابه
Positive and negative regulation of cortical cell division during root nodule development in Lotus japonicus is accompanied by auxin response.
Nodulation is a form of de novo organogenesis that occurs mainly in legumes. During early nodule development, the host plant root is infected by rhizobia that induce dedifferentiation of some cortical cells, which then proliferate to form the symbiotic root nodule primordium. Two classic phytohormones, cytokinin and auxin, play essential roles in diverse aspects of cell proliferation and differ...
متن کاملInvolvement of auxin distribution in root nodule
S (PH D THESIS) Involvement of auxin distribution in root nodule development of Lotus japonicus (Graduate School of Agriculture, Laboratory of Plant Gene Expression, RISH, Kyoto University) Kojiro TAKANASHI Legumes (Fabaceae) constitute the third largest plant family with around 700 genera and 20,000 species. Legume plants form root nodules through symbiosis with a soil microbe called rhizobia....
متن کاملInvolvement of auxin distribution in root nodule development of Lotus japonicus (Graduate School of Agriculture, Laboratory of Plant Gene Expression, RISH, Kyoto University)
S (PH D THESIS) Involvement of auxin distribution in root nodule development of Lotus japonicus (Graduate School of Agriculture, Laboratory of Plant Gene Expression, RISH, Kyoto University) Kojiro TAKANASHI Legumes (Fabaceae) constitute the third largest plant family with around 700 genera and 20,000 species. Legume plants form root nodules through symbiosis with a soil microbe called rhizobia....
متن کاملInvolvement of auxin distribution in root nodule developmentof
S (PH D THESIS) Involvement of auxin distribution in root nodule development of Lotus japonicus (Graduate School of Agriculture, Laboratory of Plant Gene Expression, RISH, Kyoto University) Kojiro TAKANASHI Legumes (Fabaceae) constitute the third largest plant family with around 700 genera and 20,000 species. Legume plants form root nodules through symbiosis with a soil microbe called rhizobia....
متن کاملFlavonoids and Auxin Transport Inhibitors Rescue Symbiotic Nodulation in the Medicago truncatula Cytokinin Perception Mutant cre1.
Initiation of symbiotic nodules in legumes requires cytokinin signaling, but its mechanism of action is largely unknown. Here, we tested whether the failure to initiate nodules in the Medicago truncatula cytokinin perception mutant cre1 (cytokinin response1) is due to its altered ability to regulate auxin transport, auxin accumulation, and induction of flavonoids. We found that in the cre1 muta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2012